Improving Resource Utilization for Compositional Scheduling using DPRM Interface

Jaewoo Lee, Linh T.X. Phan, Sanjian Chen, Oleg Sokolsky, and Insup Lee
Introduction

- Compositional scheduling analysis
 - Workload: periodic tasks (p, e)
 - Resource model: component interface
Introduction

- Periodic Resource Model (PRM) $\Gamma = (\Pi, \Theta)$
 - At least Θ resources in every Π time units
 - Supply Bound Function of Γ (sbf$_\Gamma$) : minimum resource supply
 - Schedulability condition in PRM

\[\text{(minimum possible) resource supply} \geq \text{(maximum possible) resource demand} \]

- Demand Bound Function of workload W (dbf$_W$)

- Optimality
 - PRM Γ for W is bandwidth-optimal iff Θ/Π is the minimum and Γ can schedule W
Practical Consideration

- **Optimal PRM**
 - Minimum bandwidth \((\Theta/\Pi)\) to schedule workload \(W\)
 - Optimal algorithm [1]: rational number in \(\Theta\).
 - But, \(\Theta\) should be integer multiple of the time slice

- **Ex:**
 - Optimal algorithm:
 - \((1,0.595)\)
 - Only integer:
 - \((1,1), (2,2), (3,2), (4,3), \ldots\)
 - Among all possible PRM, \((3,2)\) is optimal with integer

Contribution

- Efficient algorithm for optimal PRM with integer.
- Quantize overheads of optimal PRM with integer.
- Introduce Dual Periodic Resource Model (DPRM)
Efficient algorithm for optimal PRM with integer

- **NaïveSearch**: naïve algorithm for optimal PRM

For $\Pi = 1$ to Π_{max}

$$\Theta = \text{MinExec}(\Pi, W)$$

If $\Theta / \Pi < \text{minBW}$

$\text{minBW} = \Theta / \Pi$

$\Pi' = \Pi$, $\Theta' = \Theta$

EndIf

EndFor

workload W

Designer

$W = \{(10, 1), (12, 2), (15, 4)\}$ is used in the rest of the section

MinExec: compute the feasible minimum execution time for given workload and period

Non-decreasing

the upper bound of Π to find optimal PRM?
Efficient algorithm for optimal PRM with integer

- Upper supply bound function (usbf_Γ):
 - Linear function which is the smallest upper-bound of $\text{sbf}_\Gamma(t)$

- USBF-schedulability condition: necessary condition
 - Min. resource supply of $\text{usbf}_\Gamma \geq \text{Max. resource demand of } W$

![Graph showing resource vs. time with specific points and lines](image_url)
Efficient algorithm for optimal PRM with integer

- Theorem 1 (Upper bound of period in NaïveSearch)
 - If Γ_β is the min. bandwidth PRM for W s.t. $\Pi \leq \beta$ and κ is the bandwidth of Γ_β,
 - Then $\Pi_{opt} \leq \min_{t \in \text{CrT}_W} \frac{\kappa t - \text{dbf}_W(t)}{\kappa (1 - \kappa)}$.

Critical Times for W (CrT$_W$)

- Sufficient subset for USBF-schedulability
- For any Γ satisfying USBF schedulability,
 - intersection with usbf$_\Gamma(t)$ and dbf$_W(t)$
 - x coordinate of the points

In Ex. CrT$_W$ = \{15,60\}
Efficient algorithm for optimal PRM with integer

- **Theorem 1 (Upper bound of period in NaïveSearch)**
 - If Γ_β is the min. bandwidth PRM for W s.t. $\Pi \leq \beta$ and κ is the bandwidth of Γ_β,

 - Then $\Pi_{\text{opt}} \leq \min_{t \in \text{Cr} T_W} \frac{\kappa t - \text{dbf}_W(t)}{\kappa(1 - \kappa)}$.

- **In Example**
 - $\text{Cr} T_W = \{15, 60\}$
 - $\Gamma_3 = (3, 2)$ until $\Pi = 3$
 - By Thm. 1, $\Pi_{\text{opt}} \leq 13.5$
 - Since optimal PRM is $(5, 3)$,
 - it satisfies Thm. 1.
FastSearch: efficient algorithm for optimal PRM

- Observation: $\Theta \leq \Pi$ in PRM (Π, Θ)
- Search space can be reduced by iterating Θ, instead of Π

MinExec: compute the feasible minimum execution time

MaxPeriod: compute the feasible maximum period for given workload and execution time
Efficient algorithm for optimal PRM with integer

- Theorem 3 (Upper bound of Θ in FastSearch)
 - If Γ_β is the min. bandwidth PRM for W s.t. $\Theta \leq \beta$ and κ is the bandwidth of Γ_β,

 Then $\Theta_{opt} \leq \min_{t \in CrT_W} \frac{\kappa t - dbf_W(t)}{1 - \kappa}$.

- In Example
 - $CrT_W = \{15, 60\}$
 - $\Gamma_2 = (3, 2)$ until $\Theta = 2$
 - By Thm. 3, $\Theta_{opt} \leq 9$
 - Search space reduction $= \frac{2}{3}$
 - $\Pi_{opt} \leq 13.5$
Contribution

- Efficient algorithm for optimal PRM with integer
- Quantize overheads of optimal PRM with integer
- Introduce Dual Periodic Resource Model (DPRM)
Overhead of optimal PRM with integer

- Optimal PRM with rational number [1]
 - \((1, B)\) where \(B\) is utilization of the workload.
- Optimal PRM with integer
 - \((\Pi, \Theta)\) where \(\Pi, \Theta\) are integer and computed by FastSearch

Ex.

- \(W=\{(10,2)\}\).
- Rational number optimal PRM = \((1, 0.2)\), bandwidth= 0.2
- Integer optimal PRM = \((3, 1)\), bandwidth= 0.33
- Bandwidth overhead : 66%

Contribution

- Efficient algorithm for optimal PRM with integer
- Quantize overheads of optimal PRM with integer
- Introduce Dual Periodic Resource Model (DPRM)
Dual Periodic Resource Model (DPRM)

- DPRM: contains two PRMs
 - $\Omega = (\Gamma_1, \Gamma_2) = ((\Pi_1, \Theta_1), (\Pi_2, \Theta_2))$
 - Θ_1 unit in every Π_1 time units, additionally Θ_2 unit in every Π_2
 - Bandwidth = $BW(\Gamma_1) + BW(\Gamma_1)$

Ex. resource supply of DPRM ((6,1), (8,1))

\[\Omega = ((6,1), (8,1)) \]
Can DPRM reduce the overhead?

Ex.

- \(W = \{(7, 1), (11, 3), (13, 2)\} \)
- Optimal PRM = (3, 2), bandwidth = 0.667
- Optimal DPRM = \{(2, 1), (7, 1)\}, bandwidth = 0.643
- Bandwidth reduction = 3.73%
Dual Periodic Resource Model (DPRM)

- **DualSearch**: Algorithm for optimal DPRM

 - workload \(W \)

 - By Thm.1

 - For \(\Pi_1 = 1 \) to \(\Pi_1^{\text{max}} \)
 - For \(\Theta_1 = 1 \) to \(\Theta_1^{\text{max}} \)
 - \(\Gamma_1 = (\Pi_1, \Theta_1) \)
 - \(\Gamma_2 = \text{getResModel} (\Gamma_1, W) \)
 - If \(BW(\Gamma_1) + BW(\Gamma_2) < \text{minBW} \)
 - \(\text{minBW} = BW(\Gamma_1) + BW(\Gamma_2) \)
 - \(\Gamma_1' = \Gamma_1, \Gamma_2' = \Gamma_2 \)
 - EndIf
 - EndFor
 - EndFor

 - \(\Omega' = (\Gamma_1', \Gamma_2') \)

 - \(\text{getResModel} \) : compute the feasible minimum-bandwidth PRM \(\Gamma_2 \) for given workload \(W \) and PRM \(\Gamma_1 = (\Pi_1, \Theta_1) \)

- By FastSearch

- calculate remaining demand

- \(W' \)

- find optimal PRM for \(W' \)

- \(\Gamma_2 = (\Pi_2, \Theta_2) \)
Simulation

First 10 workloads of 200 random workload

Workload = 3 task

PRM with integer

PRM with rational number
Simulation

<table>
<thead>
<tr>
<th>The number of tasks in workload</th>
<th>% of DPRM with smaller bandwidth</th>
<th>Maximum bandwidth reduction</th>
<th>PRM overhead (A)</th>
<th>DPRM overhead (B)</th>
<th>(A)/(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>77%</td>
<td>12.5%</td>
<td>3.22%</td>
<td>1.25%</td>
<td>2.58</td>
</tr>
<tr>
<td>4</td>
<td>81%</td>
<td>15.86%</td>
<td>3.27%</td>
<td>1.21%</td>
<td>2.84</td>
</tr>
<tr>
<td>5</td>
<td>86%</td>
<td>9.09%</td>
<td>1.81%</td>
<td>0.46%</td>
<td>3.93</td>
</tr>
</tbody>
</table>

Each 200 random workload
Conclusion

- **Problem**
 - Existing algorithm [1] use rational number
 - In NaïveSearch algorithm
 - designer choose search space (not optimal)

- **FastSearch** algorithm in PRM
 - Consider **integer** parameters
 - Present a **safe upper bound** of search space for optimal resource model.

- **Dual periodic resource model**
 - Achieve **smaller bandwidth than single periodic resource model** in over 77% of workloads in the simulation

Thank you
Time Complexity of Each Algorithm

- **NaïveSearch with Theorem 1**: $O(\left(LCM_W\right)^2 \cdot \min_{P_i \in W} P_i)$.

- **FastSearch**: $O(\left(LCM_W\right)^2 \cdot \min_{P_i \in W} P_i)$.
 - From Thm. 3 and Thm. 1,
 - Thm. 3 is κ times faster than Thm. 1.

- **DualSearch**: $O((LCM_W)^4 \cdot (\min_{P_i \in W} P_i)^3)$
Backup: Triple Periodic Resource Model

- **Complexity**
 - grows fast

- **Bandwidth reduction**
 - is not significant due to significant reduction in dual model.

- **Future work**
 - Reduce complexity of DualSearch
 - Find more efficient algorithm to find optimal DPRM
Time Complexity of Each Algorithm

- TriplePeriodicResourceModel:
 \[O((\text{LCM}_W)^6 \cdot (\min_{P_i \in W} P_i)^5)\]